

DefTree 2.0.0

DefTree is a python module for modifying Defold [http://www.defold.com/] documents. The first implementation was inspired by the xml.ElementTree library.

DefTree reads any Defold document into an object tree hierarchy and follow the these three main concepts

	DefTree represents the complete Defold document as a tree.

	Element represents a single node or block in this tree.

	Attribute represent a name value pair.

Installation

Note

DefTree is only supported by python >= 3.3.0

DefTree is a native python implementation and thus should work under the most common platforms that supports python.
The package is distributed in the wheel format and is easily installed with pip.

pip install deftree

Old Versions

Old distributions may be accessed via PyPI [https://pypi.python.org/pypi/deftree].

DefTree API

Element

	
class deftree.Element(name)

	Element class. This class defines the Element interface

	
add_attribute(name, value)

	Creates an Attribute instance with name and value as a child to self.

	
add_element(name)

	Creates an Element instance with name as a child to self.

	
append(item)

	Inserts the item at the end of this element’s internal list of children.
Raises TypeError if item is not a Element or Attribute

	
attributes([name, value])

	Iterates over the current element and returns all attributes.
Only Attributes. Name and value are optional and used for filters.

	
clear()

	Resets an element. This function removes all children, clears all attributes

	
copy()

	Returns a deep copy of the current Element.

	
elements([name])

	Iterates over the current element and returns all elements. If the optional argument name is not None only
Element with a name equal to name is returned.

	
get_attribute(name[, value])

	Returns the first Attribute instance whose name matches name and if value is not None whose value equal
value. If no matching attribute is found it returns None.

	
get_element(name)

	Returns the first Element whose name matches name, if none is found returns None.

	
get_parent()

	Returns the parent of the current Element

	
index(item)

	Returns the index of the item in this element, raises ValueError if not found.

	
insert(index, item)

	Inserts the item at the given position in this element.
Raises TypeError if item is not a Element or Attribute

	
iter()

	Creates a tree iterator with the current element as the root. The iterator iterates over this
element and all elements below it in document (depth first) order.
Both Element and Attribute are returned from the iterator.

	
iter_attributes([name])

	Creates a tree iterator with the current element as the root. The iterator iterates over this
element and all elements below it, in document (depth first) order. If the optional argument name is not None
only Attribute with a name equal to name is returned.

	
iter_elements([name])

	Creates a tree iterator with the current element as the root. The iterator iterates over this
element and all elements below it, in document (depth first) order. If the optional argument name is not None only
Element with a name equal to name is returned.

	
remove(child)

	Removes child from the element. Compares on instance identity not name.
Raises TypeError if child is not a Element or Attribute

	
set_attribute(name, value)

	Sets the first Attribute with name to value.

Attribute

	
class deftree.Attribute(parent, name, value)

	Attribute class. This class defines the Attribute interface.

	
get_parent()

	Returns the parent element of the attribute.

	
name

	The name of the attribute, used to set and get the name

	
value

	The value of the attribute, used to set and get the attributes value

DefTree

	
class deftree.DefTree

	DefTree class. This class represents an entire element hierarchy.

	
dump()

	Writes the the DefTree structure to sys.stdout. This function should be used for debugging only.

	
from_string(text[, parser])

	Parses a Defold document section from a string constant which it returns.
parser is an optional parser instance. If not given the standard parser is used.
Returns the root of DefTree.

	
get_document_path()

	Returns the path to the parsed document.

	
get_root()

	Returns the root Element

	
parse(source[, parser])

	Parses a Defold document into a DefTree which it returns. source is a file_path.
parser is an optional parser instance. If not given the standard parser is used.

	
write(file_path)

	Writes the element tree to a file, as plain text. file_path needs to be a path.

Helpers

	
deftree.parse(source)

	Parses a Defold document into a DefTree which it returns. source is a file_path.
parser is an optional parser instance. If not given the standard parser is used.

	
deftree.from_string(text[, parser])

	Parses a Defold document section from a string constant which it returns. parser is an optional parser instance.
If not given the standard parser is used. Returns the root of DefTree.

	
deftree.is_element(item)

	Returns True if the item is an Element else returns False

	
deftree.is_attribute(item)

	Returns True if the item is an Attribute else returns False

	
deftree.to_string(element[, parser])

	Generates a string representation of the Element, including all children.
element is a Element instance.

	
deftree.dump(element[, parser])

	Writes the element tree or element structure to sys.stdout. This function should be used for debugging only.
element is either an DefTree, or Element.

	
deftree.validate(string, path_or_string[, verbose])

	Verifies that a document in string format equals a document in path_or_string.
If Verbose is True it echoes the result. This function should be used for debugging only.
Returns a bool representing the result

Using DefTree

If you are not familiar with Defold files this is how the syntax looks, it is in a Google Protobuf [https://developers.google.com/protocol-buffers/] format.

elementname {
 attributename: attributevalue
 position {
 x: 0.0
 y: 0.0
 z: 0.0
 }
 type: TYPE_BOX
 blend_mode: BLEND_MODE_ALPHA
 texture: "atlas/logo"
 id: "logo"
}

Parsing Defold Documents

Parsing from a file is done by calling the parse method

import deftree
tree = deftree.parse(path) # parse the document into a DefTree
root = tree.get_root() # returns the root from the tree

Or alternatively we can first create a DefTree instance

tree = deftree.Deftree()
root = tree.parse(path)

We can also parse a document from a string

tree = deftree.from_string(document_as_string) # parse the document into a DefTree
root = tree.get_root() # returns the root from the tree

Finding interesting elements

Element has some useful methods that help iterate recursively over all
the sub-tree below it (its children, their children, and so on). For
example, Element.iter():

for child in root.iter():
 print(child.name)

We can also iterate only elements by calling Element.iter_elements()

for child in root.iter_elements():
 print(child.name)

for child in root.iter_elements("nodes"): # iter_elements also supports filtering on name
 print(child.name)

Element.get_attribute() finds the first attributes with the given name
in that element.

attribute = element.get_attribute("id")

Modifying existing scenes

DefTree provides a simple way to edit Defold documents and write them
to files. The DefTree.write() method serves this purpose. Once created,
an Element object may be manipulated by directly changing its fields,
as well as adding new children (for example with Element.insert()).

E.g. if we want to find all box-nodes in a gui and change its layers.

for element in root.iter_elements("nodes")
 if element.get_attribute("type") == "TYPE_BOX":
 element.set_attribute("layer", 'new_layer')

We can also add new attributes and elements all together.

new_element = root.add_element("layers")
new_element.add_attribute("name", 'new_layer')

DefTree Attributes that are of number types support basic math functions directly

new_element = root.get_element("position")
attribute = new_element.get_attribute("x")
attribute += 10

You can either use the set value if you are getting, or you can use its .value property

attribute = element.get_attribute("layer")
attribute.value = "new_layer"

We will probably then overwrite the file

tree.write(tree.get_document_path())

Design

Here I would like to go over some important details concerning implementation that may help when working with DefTree.

Defold Value vs Python Value

To simplify working with attributes I decided to split how the value looks for Defold and how it looks for python.
Not only does this simplify working with attributes it also enables us to do some sanity checking to ensure that we do not set a value that was an int to a float because this would make the file corrupt for the Defold editor.

Defold will always enclose a string within two quotes like “/main/defold.png”. To make it easier for us to work with it DefTree reports this as /main/defold.png, i.e. without the quotes. As an example, let us assume we have a file that looks as follows:

nodes {
 id: "sprite"
 blend_mode: BLEND_MODE_ALPHA
 inherit_alpha: true
}

This enables the user to do this:

tree = root.parse(my_atlas)
root.get_root()

for ele in root.get_element("nodes"):
 node_id = ele.get_attribute("id")
 alpha = ele.get_attribute("inherit_alpha")
 if node_id == "sprite" and alpha:
 ...

in contrast to:

tree = root.parse(my_atlas)
root.get_root()

for ele in root.get_element("nodes"):
 node_id= ele.get_attribute("id")
 alpha = ele.get_attribute("inherit_alpha")
 if node_id == "/"sprite/"" and alpha == "true": # or '"sprite"'
 ...

The former is a lot more readable and not as error prone, as I see it.

Attribute types

The attribute’s type is decided on creation and follow the logic below:

If the value is of type(bool) or a string equal to “true” or “false” it is considered a bool.

If the value consists of only capital letters and underscore (regex’d against [A-Z_]+) it is considered an enum.

If the value is of type(float) or it looks like a float (regex’d against [-\d]+\.\d+[eE-]+\d+|[-\d]+\.\d+) it is considered a float.

If the value is of type(int) or can be converted with int() it is considered an int.

Else it is considered a string.

Contributing

Bug fixes, feature additions, tests, documentation and more can be contributed via issues [https://github.com/Jerakin/DefTree/issues] and/or pull requests [https://github.com/Jerakin/DefTree/pulls]. All contributions are welcome.

Bug fixes, feature additions, etc.

Please send a pull request to the master branch. Please include documentation [https://deftree.readthedocs.io] and tests [https://deftree.readthedocs.io] for new or changed features. Tests or documentation without bug fixes or feature additions are welcome too.

	Fork the DefTree repository.

	Create a branch from master.

	Develop bug fixes, features, tests, etc.

	Run the test suite.

	Create a pull request to pull the changes from your branch to the DefTree master.

Guidelines

	Separate code commits from reformatting commits.

	Provide tests for any newly added code.

	Follow PEP8.

Reporting Issues

When reporting issues, please include code that will reproduce the issue. The best reproductions are self-contained scripts with minimal dependencies.

Changelog

UNRELEASED

2.0.0 [https://github.com/Jerakin/DefTree/compare/release/1.1.1...release/2.0.0]

ADDED

	Added the following functions for the DefTreeString implementation: endswith, startswith, strip, rstrip, count, index, rindex, replace

	Added Attribute implementation for len()

Changed

	repr() for Elements and Attributes now returns a proper formatted representations of the object

	__str__ on Attributes removed, now defaults back to repr()

	uses python standard library copy for getting a copy of a elements

Removed

	Removed Element._set_attribute_name(), name of attributes should be changed with Attribute.name

1.1.1 [https://github.com/Jerakin/DefTree/compare/release/1.1.0...release/1.1.1]

Changed

	Fixed a bug where a negative number would be evaluated as a string

1.1.0 [https://github.com/Jerakin/DefTree/compare/release/1.0.2...release/1.1.0]

Added

	Added Element.iter_attributes to iterate over the elements and its children’s elements attributes

Changed

	Only imports re.compile from re instead of the whole of re

	The string value of an attribute can now be get with Attribute.string

	The Attribute.value and the value Attribute() returns should be the same

	Now reports the python value when calling the __str__ method instead of the defold value

	is_element and is_attribute are no longer flagged as internal

	improved type checking when setting attribute values

1.0.2 [https://github.com/Jerakin/DefTree/compare/release/1.0.1...release/1.0.2]

Changed

	How DefTree determines if a string is a string, int or float. Fix for bigger numbers with science annotation

1.0.1 [https://github.com/Jerakin/DefTree/compare/release/0.2.0...release/1.0.1]

Added

	Added Element.add_element(name)

	Added Element.add_attribute(name, value)

	Added Element.set_attribute(name, value)

	Added Element.elements() - for getting top level elements of Element

	Added Element.attribute() - for getting top level attribute of Element

	Exposed deftree.dump and deftree.validate in the documentation

	Added DefTree.get_document_path() to get the path of the document that was parsed

	Attribute are now sub classed into different types this to make it easier when editing values as Defold is picky

Changed

	Element.iter_all() is now Element.iter()

	Element.iter_find_elements(name) is now Element.iter_elements(name)

	Changed how attributes reports their value. They should now be easier to work with, without any need add quotationmarks and such.

Removed

	Removed SubElement() factory, now use element.add_element()

	Removed Element.iter_attributes()

	Removed Element.iter_find_attributes()

	Removed NaiveDefParser as it was obsolete and inferior

	Removed Example folder

0.2.0 [https://github.com/Jerakin/DefTree/compare/release/0.1.1...release/0.2.0]

Added

	Raises ParseError when reading invalid documents

Changed

	Updated docstrings to be easier to read.

	Refactored internal usage of a level variable to track how deep the item were in the tree

Removed

	Removed Element.add(), use Element.append() Element.insert()

	Removed Element.items(), use Element.iter_all()

0.1.1 [https://github.com/Jerakin/DefTree/compare/release/0.1.0...release/0.1.1]

Added

	Licence to github repository

	Setup files for PyPi to github repository

	Example usage

	Unittesting with unittest [https://docs.python.org/3/library/unittest.html]

	Coverage exclusion for usage with Coverage.py [http://coverage.readthedocs.io/en/latest/]

	Using __all__ to define public api, in case of wild import

Changed

	Elements __setitem__ raises exception on invalid types

	Elements __next__ implementation was broken

	serialize() is now a class method

0.1.0 [https://github.com/Jerakin/DefTree/compare/52db00b03bb3990c06843f3a58f24fce13b8fe74...release/0.1.0]

Added

	First release of DefTree

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	add_attribute() (deftree.Element method)

 	add_element() (deftree.Element method)

 	
 	append() (deftree.Element method)

 	Attribute (class in deftree)

 	attributes() (deftree.Element method)

C

 	
 	clear() (deftree.Element method)

 	
 	copy() (deftree.Element method)

D

 	
 	DefTree (class in deftree)

 	
 	dump() (deftree.DefTree method)

 	(in module deftree)

E

 	
 	Element (class in deftree)

 	
 	elements() (deftree.Element method)

F

 	
 	from_string() (deftree.DefTree method)

 	(in module deftree)

G

 	
 	get_attribute() (deftree.Element method)

 	get_document_path() (deftree.DefTree method)

 	get_element() (deftree.Element method)

 	
 	get_parent() (deftree.Attribute method)

 	(deftree.Element method)

 	get_root() (deftree.DefTree method)

I

 	
 	index() (deftree.Element method)

 	insert() (deftree.Element method)

 	is_attribute() (in module deftree)

 	
 	is_element() (in module deftree)

 	iter() (deftree.Element method)

 	iter_attributes() (deftree.Element method)

 	iter_elements() (deftree.Element method)

N

 	
 	name (deftree.Attribute attribute)

P

 	
 	parse() (deftree.DefTree method)

 	(in module deftree)

R

 	
 	remove() (deftree.Element method)

S

 	
 	set_attribute() (deftree.Element method)

T

 	
 	to_string() (in module deftree)

V

 	
 	validate() (in module deftree)

 	
 	value (deftree.Attribute attribute)

W

 	
 	write() (deftree.DefTree method)

 Written for the authors bad memory

Docs

Install sphinx and the read the docs theme

pip install Sphinx

pip install sphinx_rtd_theme

Build and verify documentation

cd doc
make html

Run unittests

Install coverage

pip install coverage

Run unittests with coverage

coverage run --omit=tests/test_deftree.py -m unittest discover -s tests/
coverage report

PyPi

Install dependencies

pip install twine
pip install wheel

Build the wheel

python setup.py bdist_wheel

Upload to PyPi

twine upload dist/*

Git

	Tag the release with “release/x.x.x”

	Update the __version__ in deftree.py

	Update CHANGELOG.rst

	Push to repository

	Build documentation on deftree.readthedocs.io

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 DefTree 2.0.0

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

